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Atstract

I-inear microwave circuit analysis by sparse matrix techniques is discussed. Optimum equation

ordering and pivoting are proposed to reduce execution time , storage requirement and to improve ac-

curacy. Details on the implemented program and a numerical example are given.

Introduction

A computer program for analyzing linear micro-

wave circuits can draw great advantage from sparse

matrix techniques which, associated with a code gen-

eration program, allow computing and storing of only

the nonzero elements. In this paper such an approach

is investigated in order to reduce execution time and

storage requirements, as well as to choose optimum

pivots.

The computer program which has been written to

calculate, in terms of component scattering parameters,

incident and reflected waves at any component port, is

also described, and a numerical example is given.

Problem Formulation

For every microwave circuit component with nk

ports a system of nk equations can be written:

bk=skak , (1)

sk being its scattering matrix, ak and bkthe vectors of

incident and reflected waves at its nk ports. A gen-

erator, instead, is described by relation:

bg=sgag+cg , (2)

to take the impressed wave Cg into account, too.

Collecting together the equations relative to all

the m components and generators, a system describing

the circuit with all the elements uncoupled is obtained:

where:
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ai,bizei being incident, reflected and impressed

wave vectors relative to the i-th component and Si its

scattering matrix.

The connections between various components im-

posed by circuit topology introduce constraints to in-

cident and reflected waves at adjacent ports which may

be put in the form:

b=ra , (5)

r being the connection matrix
1,2

: its elements are all

zeros except those in the entries corresponding to ad-

jacent ports, which are 1IS if normalization numbers

are the same.

From (3) and (5), by setting:

M= r-s , (6)

one obtains:

a. M–’c, b=r M-’c , (7)

which completely describe circuit behavior and allow

determination of the waves a and b at all the compo -

nent ports when impressed waves c are given.

When the number of component ports is large the

solution of system (7) requires a lot of computations if

sparsity of M and c is not taken into account. In fact,

M is a matrix which has most of its elements zero ;

sparse matrix solution techniques can be usefully ap-

plied especially when the system must be solved many

times, with fixed sparseness structure but with differ-

ent numerical values for the M elements, as happens in

frequency domain analysis an~ in optimization process.

~

A discussion on the properties of matrix M is giv-

en in this section in order to find the most convenient

technique to solve system (7).

The computational effort can be greatly reduced

by taking into account the following:

- the only nonzero elements of matrix Mare: the diag-

onal ones, which are the reflection coefficients at

component ports; those in the entries corresponding

to ports belonging to the same component, which are

the transmission coefficients between the two ports;

and those corresponding to ports connected togeth-

er, which take the constant value 1;

- sparseness structure of M is fixed and does not de-

pend an the f~equency;

- numerical values of nonzero elements may change

with the frequency except the 1Is indicating connec-

tions;

- vector c has nonzero terms only in positions rela-
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tive to generators.

The fixed sparseness structure of M and c makes

the Crout method very convenient for solving system(7)

especially when it has to be solved many times with

changed coefficient values. The method consists of

factorizing Minto two matrices:

M=LU, (8)

L lower triangular and U upper triangular with I IS on

the diagonal. Then, by the forward and back substi -

tutions:

Ly=c, Ua=y, (9)

derived from (7), all the wave variables may reobtain-

ed.

The elements of matrices L andqll are determined

by the following recurrent formulaeQ:

k–1

1,, = m,k-~ll,v ‘W , i=k

Ukk=l ,

k–l

Ukj = (mkl ‘~llk~ UPI )/lkk , j<k

1o)

11)

12)

m

fdr k= 1, 2, . . .,n where n=~l ni is matrix dimension.
The forward and back substitutions give:

l–l

Yj= (Cj-~ll,~Y~)/li, J J=l, z). ..n (13)

iaj=yj - Ujpau ,
ll=j+l

j=n,n-],. .1 (14)

All the elements of L and U can be stored in a ma-

trix: T= L+ U-E ,

E being unity matrix. Any tjkof T is zet’o if both mjk

of Mand all the products tji tik with: Isismin{j-1, k-l},

are zero. Therefore, the number of nonzeros in T
depends on the ordering of rows and columns in M , as
is discussed later.

A great reduction in ~xecution t“lme is obtained with

the reduced Crout method according to which only the

nonzero operands are considered in computing the non-

zeros of T . The strategy fol lowed consists of gener-

ating a FORTRAN code which contains the statements

strictly necessary to execute the required operations.

Since the code depends only on the matrix M struc-

ture, it is generated only once before startin9 the exe-

cution of arithmetical operations. In order to minim”~e

the code length, which depends on the sparseness strut

ture of T , row and column ordering of Mhas to be per-

formed before generating the code; particular attention-
must, however, be paid because precision depends on

the values of the diagonal elements of the re-ordered

matrix, the pivots, which are used as divisors in (12)

and (13).

This predetermined pivoting might cause a loss of

accuracy, due to round-off errors, for some frequency

points, since the values of component parameters

change with the frequency. However, in system (7) e-

very row of M contains the constant 1, deriving from

r , which could be an ideal pivot because it allows

great precision, independent of frequency and, at the

same time, divisions are avoided. Really, half the lls

are modified in the course of the factorization process

but rarely may their value become zero and only in a-

nomalous cases (e.g. when instability occurs).

Many ordering strategies have been proposed by

differe t authors with reference to the nodal admittance

matrix~J6. Some of these have been proved, together

with others which were set-up specifically for the ma-

trix M, by a program which gives the ratio between

the nonzeros in T and in M, which may be assumed as

the index of algorithm efficiency.

The fol lowing strategy was the most convenient,

due to its low index (equal to or less than all the oth-

ers) and for the simplicity of implementation:

- the couple of rows relative to adjacent ports are con

sidered together and ordered so that each couple ha%

a number of nonzeros not greater than that of the

successive one; in every couple the row with fewer

nonzeros precedes the other;

- the columns are then ordered to place all the 1Is of

r on diagonal.

This algorithm has been adopted in the program

for microwave circuit analysis, which has been imple-

mented and is described in the next section.

Program Description

The program has a two-pass compi Ier-i ike struc-

ture. It translates a circuit topological description

into a FORTRAN code containing all the operations

whose execution gives incident wave vector a in terms
of component S-parameters.

On the basis of a circuit topological description ,

the first pass determines the optimum ordering ofequa-

tions by the given algorithm and produces an interme -

diate file containing a description of the nonzero posi -

tions in the ordered matrix M and a map of component

S-parameters. The second pass generates a FORTRAN

code formed by factorization and substitution routines

and their main program. Then, after compilation of

the generated code, an arithmetical phase begins which

consists of code execution for every set of parameter

values corresponding to different frequency points, or

to different steps of an optimization process.

The whole program has been structured so that the

memory waste be minimized by storing all the informa-

tion in pseudo-dynamically allocated tables.

Conclusion

A method for analyzing microwave circuits in term

of scattering parameters by sparse matrix solution has
been proposed and the implemented program has been

described.

In order to give quantitative information on the prog

ram the thin-film strip-line branching-filter in fig. la -

has been analyzed. It has been described for the prog

ram as shown in fig. lb with port 1 connected to a gen:

erator, ports 2 and 3 to loads and all the others to 0-

pen-circuit terminations . In fig. 2 the computed

transmission coefficients 1s2,1 and [ Sail are
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plotted vs. frequency.

In the given example, M is a 96x96 matrix with

384 nonzeros. The CDC6600 CPU time for ordering

and for generating and compi Iing the factorization

and substitution code, which is composed of 1410 state

ments, is about 10 sees. The execution time for evac-

uating the normalized waves at all the ports is about 13

msecs for every frequency point.

The thin-fi Im coupled-line component S-parameters

have been d~termined from geometrical description by

subroutines associated to the program.

Maximum memory occupation , which is of 30k words,

was required during generated code compi Iation and

includes the 16k words of the compiler.
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